0%

2025年八月August
星期日
Sunday
星期一
Monday
星期二
Tuesday
星期三
Wednesday
星期四
Thursday
星期五
Friday
星期六
Saturday
1 2
😁 4 5 6 😁 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
阅读全文 »

压缩带来智能,5% 的论文决定学术界 95% 的成果!每天从 Arxiv 论文中总结分享最重要、最有趣的最多三篇论文。

Compression brings intelligence, 5% of papers determine 95% of AI technologies! Share the most important papers from Arxiv, every day, up to three!

2025年八月August
星期日
Sunday
星期一
Monday
星期二
Tuesday
星期三
Wednesday
星期四
Thursday
星期五
Friday
星期六
Saturday
1(251->2 papers) 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
阅读全文 »

Trae Agent: An LLM-based Agent for Software Engineering with Test-time Scaling

trae竟然还发论文,而且是多轮rl的code agent。通过测试时的再搜索,把swe-bench刷到了75分

感觉swe bench被刷爆了呀,谁再搞个swe-hard

Phi-Ground Tech Report: Advancing Perception in GUI Grounding

phi团队出了一个小的grounding模型。整体比较开放,share不少训练的trick

Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving

一篇挺干净的工作,作者想要结合search+train搞出来一个最强的lean4证明模型。搞了一个2层的搜索系统,每次提出一堆假设,再一点点去验证。通过这种方式,把今年的IMO 6道题证出来5道

感觉分化出了两个流派。一个是像o3把一个链做长,另一派是alpha-evolve这样搞个很大的搜索树

阅读全文 »

HunyuanWorld 1.0: Generating Immersive, Explorable, and Interactive 3D Worlds from Words or Pixels

hunyuan的新工作,主要是把他们之前的3d生成、mesh-gen、t2i这些能力合版统一了,提供了3d相关的各种服务

Meta CLIP 2: A Worldwide Scaling Recipe

meta的新工作,作者解决了一个clip领域scaling的问题:在多语言数据上训练clip,在英文上的效果反而比english-only的训练要差。作者设计了receipt来解决这个问题,让clip可以从多语言训练中受益

讲道理,llm领域好像就没有这个问题,一般训得多了就是好?

阅读全文 »

Agentic Reinforced Policy Optimization

这篇工作比较有趣。大家还记得前段时间seed发布了一个,根据entropy的高低,在最高的几个地方fork出来新的rollout,来提升在high-entropy地方的采样效率的工作(First Return, Entropy-Eliciting Explore)。这篇工作,作者推广到了agent场景,发现在工具调用结束,刚看到tool-output的地方,特别容易entropy很高。所以作者复刻了这个fork方法,在fc-agent场景取得了比较高的采样效率

Kimi K2: Open Agentic Intelligence

K2 report,在twitter上火了好久,今天终于上arxiv了。作者训了个很稀疏的1TB总参数模型,在下游训了多轮的text-only agent rl。

StepFun-Prover Preview: Let’s Think and Verify Step by Step

一篇lean4模型的rl工作,但作者建模成了多轮,每轮都可以生成证明、或者refine,变成了一个类似swe-agent的形式。通过这种agent框架,把lean4的sota又往上抬了一格

阅读全文 »

半年没写论文阅读笔记,其实笔记草稿写了不少,都没转正。主要觉得像是机械的翻译,没有思想在里面,不如不发。最近大家开始陆陆续续放出来o1-like的模型了,其实翻过头看,大家的思考方式还是几年前的STaR,去年我也写过 一篇阅读笔记 介绍。

今天不妨来重新思考一下STaR,连接上跟进的几篇STaR-like的工作,谈谈我对于o1的理解吧。参考文献:

  • STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning
  • Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking
  • Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
  • Training Chain-of-Thought via Latent-Variable Inference
  • Rest Meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent
  • Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering
  • Training Language Models to Self-Correct via Reinforcement Learning
阅读全文 »

今天来讲讲Many-Shot In-Context Learning,大概是deepmind一个月前的文章,读下来和之前Jason Wei那篇"Large Models do In-Context Learning Differently"的阅读体验有点像,是一篇"暗合scaling天意"的文章。

看完了我把他和另外两篇论文联系了起来,想到了未来LLM在context重建AI的可能性。最后,推荐大家读一下原文,deepmind论文就像乐高,阅读(拼搭)体验一直很好……

参考资料:

Many-Shot In-Context Learning

Many-Shot In-Context Learning in Multimodal Foundation Models

In-Context Reinforcement Learning with Algorithm Distillation

阅读全文 »

最近Apple出了自己的30B多模态大模型,涌现出了多模态的in-context learning效果,论文里一句"even better"让我想到库克那个嗓音……作者说明了很多在训练中收获到的经验教训,这是我最近几个月看的写法最清楚的一篇论文。正好借此讲讲多模态大模型:目前学界大火的VLM,到底是怎么跑的?

阅读全文 »

最近Sora巨火,仿佛开启了AIGC的新时代。Jason Wei表示:"Sora is the GPT-2 moment" for video generation。我在sora发布的大约第5个小时读了technical report,里面最打动我的其实是没提什么细节的recaption技术。让我回想想起了之前读DALL.E 3论文时的愉快体验。

所以今天来分享一下DALL.E 3论文里的recaption细节,并讨论几个问题和我的看法:1)OpenAI教你为什么要"先查看原始数据,再做创新" 2)Recaption和大家一直在聊的"training on synthetic data"是一回事吗? 3)recaption技术是否已经在(或者即将在)被其他领域使用?

另外,我总结了一下上篇笔记阅读量大的关键:语言表达要浅显易懂些,所以这篇笔记我可以声明一下:没学过AI也能看懂(我在博客里加了这个标签"from scratch",所有我认为不懂AI或者只知道一点点的人也能看懂的博客都会加上这个标签)

参考文献:

https://openai.com/sora

Improving Image Generation with Better Captions

Automatic Instruction Optimization for Open-source LLM Instruction Tuning

WaveCoder: Widespread And Versatile Enhanced Instruction Tuning with Refined Data Generation

Reformatted Alignment

Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling

阅读全文 »

今天是2月29日,我迎来了研究生的第二个学期。上次2月29日已经是2020年,而下次2月29日要到2028年了。人生有多少4年,再加好久没有更新,遂写一写最近的生活吧。

其实我写总结这个track,还是因为最开始看了谭院士的博客 Wandai Blog:谭院士总是时间驱动,每天写一个sentence-level的总结,陆陆续续竟然坚持了十几年。时间是有惯性的,有点类似于顺着一个人的微信刷pyq,不会到了某个位置突然被卡掉,看下来有种震撼人心的感觉。所以我也想是不是记录一下自己的生活。

我当时选了另一种形式:事件感想驱动,更大的interval, 在corpus-level做记录,所以给自己起名字叫做"随缘"。现在想想可能并不适合,我和谭院士的记录方式也许应该倒一倒。我的生活当然没有谭院士丰富,用instruction tuning的话说:每天翻来覆去总是从一些task set里先sample task \(t \in \mathcal{T}\),再sample \(x \in \mathcal{X}_t\),最后预测 \(y = me(x)\)。做得多了,熟能生巧,常用的几个task的能力越来越高了,但一直没什么机会探索更大更diverse的instruction空间。

不过近期确实有所不同,我深感在过去一个月里,尝试的新事物堪比过去一两年。

阅读全文 »